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Vibration problems of spinning shafts with attached disks occur quite
frequently, but until recently the analyses were generally restricted to the
¯exible-shaft/rigid-disk models, which lost at least two-thirds of the vibrational
characteristics to a certain extent. In the present paper, a substructure synthesis
technique is applied to the modelling of the bending coupled dynamics of a
spinning shaft/disk system with disk ¯exibility considered. The shaft is treated
as a Timoshenko beam. The coupled equations of motion are derived
analytically. A numerical study is performed to demonstrate the method
developed. The bending coupled natural frequencies, both in view of the shaft
transverse vibration and in view of the disk transverse vibration, and the
coupled mode shapes are obtained as spin speed varies. The disk ¯exibility has
important e�ects on the system vibrational behavior, especially at the frequency
range near the natural frequencies of single disks.
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1. INTRODUCTION

The vibrations of a spinning shaft with attached disks are of wide research interest
as an essential element of many modern machines. The analysis is generally
restricted to the ¯exible-shaft/rigid-disk model. In another aspect, there has been
extensive research on the vibrations of ¯exible disks since the famous early works
[1±5]. A single disk with inner-clamped and outer-free boundaries can be
modelled as an elastic disk rigidly attached to a rigid shaft with rigid bearings. For
the two models above, no ¯exible coupling effects exist between the disks and the
shaft in addition to the rigid rotation effectsÐthe rotary inertia effect and the
gyroscopic moments. The present research will show that for an elastic shaft/disk
structure, the coupled vibrations consist of shaft-dominating modes, disk-
dominating modes and shaft±disk coupled modes. The ¯exible-shaft/rigid-disk
model can only predict the shaft-dominating modes with some frequency values
over-estimated, while leaving the disk-dominating modes and shaft-disk coupled
modes unperceived. So, to a certain extent, at least two-thirds of the vibratory
characteristics are lost when analyzed relying on a shaft/rigid-disk model.
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According to the nature of coupling with the shaft, disk vibratory modes are
classi®ed for convenience into three groups (section 2.3): uncoupled disk modes
with more than one nodal diameter, disk modes with a single nodal diameter
coupled with the shaft bending vibrations and disk modes with zero nodal
diameter (axisymmetric modes) coupled with the shaft longitudinal (axial)
vibrations. The uncoupled disk modes can be calculated accurately, if the
accurate values of Bessel functions are available, for stationary disks, or by
approximate methods for rotating disks or disks containing radially symmetric
stress ®elds, arising, for example, from residual or thermal effects [6]. The
longitudinal coupled vibrations were addressed by Jia et al. [7]. Several
investigators have modelled the bending coupled vibrations based on different
schemes, which are summarized as follows. Dopkin and Shoup [8] analyzed the
effect of disk ¯exibility and gyroscopic forces on the bending natural frequencies
of an axisymmetric rotating shaft with ¯exible disks by a transfer matrix
analysis. Chivens and Nelson [9] analytically investigated the in¯uence of disk
¯exibility on both the natural frequencies and critical speeds of a ¯exible shaft±
disk system. Wilgen and Schlack [10] applied the Liapunov method to an
analysis model consisting of a ¯exible disk rigidly attached at an arbitrary
location along a ¯exible shaft to investigate the effects of disk ¯exibility on the
stability. Shahab and Thomas [11] studied the coupling behavior between the
stationary ¯exible thick disks and the ¯exible shaft carrying these disks by a
®nite element method. Vance [12] considered the attachment ¯exibility of the
disks to the shaft. Wu and Flowers [13] developed a transfer matrix procedure in
which the disk ¯exibility effects were accounted for by means of additional terms
included in the transfer matrix formulation. Shen and Ku [14] suggested an
analytical formulation for a rigid spindle with elastic circular disk supported by
two elastic antifriction bearings to predict the non-traditional vibration
resonances encountered in modern disk drives.
In this paper, the bending coupled vibrations of a ¯exible shaft±¯exible disk

system are studied by a substructure synthesis technique [15]. The method has
been successfully applied to predict the tricky coupled vibrations of commercial
computer hard disk drive spindle systems [16] where the ¯exible shaft was
modelled as a Rayleigh beam [17] in which the lateral motion and the rotary
inertia effect are considered, but the shear deformation effect is neglected. For
the present work, the method is further developed to apply to a multispan
Timoshenko beam [18, 19], in which both the rotary inertia effect and the shear
deformation effect of the elastic shaft are taken into account, with elastic circular
disks. In addition, multiple isotropic journal bearings are included.

2. MODELLING ASSUMPTIONS AND ANALYSIS METHOD

2.1. ASSUMPTIONS

The system to be analyzed, shown in Figure 1, consists of a ¯exible shaft
carrying M ¯exible disks rigidly attached to the shaft. The assumption of rigid
attachment means that the inner boundary of the disks remains normal to the
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shaft in all modes. The shaft is supported by N ¯exible journal bearings. It is
assumed that the shaft is of varying annular cross-section and each disk is a
uniform circular plate, as used for steam turbines.
The shaft is modelled as a Timoshenko beam, considering rotary inertia and

shear deformation effects.
The classical thin plate theory or Kirchhoff plate theory [20] is used to

describe the disk vibration, where the non-linear effect and the thick plate effects
of rotary inertia and shear deformations are neglected. The normals to the
middle plane of the plate are assumed to remain normal to the de¯ected middle
plane during vibration, and the dissipation due to damping is not included. The
centrifugal stiffening effect of the disk is included.
The gyroscopic or Coriolis effect is included. Small deformation is assumed

throughout the analysis. The bending coupled vibrations of the system will be
analyzed. In particular, a few lowest vibration modes are of major interest.

2.2. CO-ORDINATE SYSTEMS

In order to obtain the total kinetic and potential energies, the system may be
conveniently regarded as an assemblage of substructures to which local reference
frames are assigned to describe the rigid body motions. Then, elastic
deformations are de®ned as motions relative to the moving local reference
frames. Three co-ordinate systems are used (see Figure 2). An X0±Y0±Z0 frame
represents the inertial (Newtonian) system; X1±Y1±Z1 is the local reference
frame rotating at the shaft angular speed O about the X1 axis, where the X0 and
X1 axes are collinear and coincident with the undeformed bearing centerline; X2±
Y2±Z2 is the local reference frame ®xed to a disk with the origin at the center of
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Figure 1. Analysis model.
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the disk. The whirling of the shaft is represented by (vS ,wS) in X1±Y1±Z1. The
elastic de¯ection of the disk relative to X2±Y2±Z2 is denoted by uD. The rigid
body rotation of the disk is de®ned by ®rst the rotation Ot about X 00, then the
small rotation angle yx about Y 01, and last, the small rotation angle yZ about Z2.

2.3. COUPLING ANALYSIS OF A ELASTIC SHAFT±DISK STRUCTURE

To investigate the coupling caused by disk ¯exibility, one chooses a section
(Figure 3) including one disk from the shaft/multiple-disk system. It is assumed
that the attachment of the disk to the shaft is rigid, so that the disk remains
normal to the shaft in all modes. For a rotating uniform disk, the differential
equation of elastic transverse vibration can be derived by the application of
Hamilton's principle. The equation of free vibration has the form
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Figure 2. Co-ordinate systems: (a) the rigid body motion of a disk, (b) the ¯exible transverse
deformation of a disk, and (c) the lateral deformation of the shaft.
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where a and b are the inner and outer radii of the disk, respectively; rD is the

mass per unit volume of the disk, hD is the thickness of the disk; D is the ¯exural

rigidity of the disk; vD is the Poisson's ratio; r4 is the biharmonic operator

(r4uD�r2(r2uD)); Nr and Ny are normal stress resultants in polar coordinates;

r2 is the Laplacian operator. The expressions are detailed in Appendix A, where

O is the constant rotating speed of the shaft (rad/s) and ED is the Young's

modulus.

Considering the derivation by Meirovitch [21] and�2p
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and u and v are two arbitrary comparison functions, it is straightforward to

demonstrate that the eigenvalue problem for the elastic transverse vibration (1)±
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Figure 3. Analysis model for shaft/¯exible-disk coupling.
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(3) of a uniform disk is self-adjoint, and it follows that its eigenfunctions
constitute a complete set of orthogonal modes. Then, the ¯exible displacement of
the elastic disk can be expressed according to the expansion theorem

uD�r, y, t� �
X1
i�1

Ui�r, y�qi�t�,

where Ui (r, y) are orthonormal modes of the disk, and qi (t) are the
corresponding time-dependent generalized co-ordinates. Here one considers
harmonic vibration, so that �qi�t� � ÿo2

i qi�t�, where oi is the natural frequency
of the ith disk mode and a dot denotes derivative with respect to time t .Ui (r, y)
may be expressed in the form [4]

Ui�r, y� � Umn�r, y� � Rmn�r��amn cosmy� bmn sinmy�, m, n � 0, 1, 2, . . . ,1,

where Umn(r, y) represent the orthonormal modes of m nodal diameters and n
nodal circles. Ui (r, y) can be regarded as the reranking of Umn(r, y) by order of
increasing corresponding natural frequencies. Rmn(r) is the radial distribution of
the mode shape. amn and bmn are constants determining the orientation angle
ymn0 of the resultant mode relative to the disk: amn cos my+ bmn sin
my � cos m�y� ymn0�. For a perfectly symmetric disk, whether uniform or not,
theory indicates, and experiment veri®es, that there will be no ®xed preferential
orientation (ymn0) of the mode with respect to the disk (reference [17], pp. 363±
366). Therefore, to simplify the following formulation, without loss of generality,
it is assumed that ymn0� 0.
The inertia force of the vibrating disk is
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for m � 0,

for m 6� 0:
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And the inertia moment about P (the direction is perpendicular to the shaft) is
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�2p
0

cos�my� cos y dy � p;
0;

for m � 1,

for m 6� 1:

�
�5�

Formulas (4) and (5) imply that the disk modes of zero nodal diameter
(axisymmetric modes) couple with the longitudinal vibration of the shaft for the
inertia force Fp , the disk modes of one nodal diameter couple with the bending
vibration of the shaft for the inertia moment Mp , and all other modes of nodal
diameter me 2 do not couple with the shaft vibration. Accordingly, in the
following discussion of bending coupled vibrations, only disk modes of single
nodal diameter are considered, and the disk modes appearing in the ensuing
paragraph, unless otherwise speci®ed, are modes of single nodal diameter.

2.4. SUBSTRUCTURE SYNTHESIS

A substructure synthesis technique, developed for the modelling of ¯exible
multibody systems, is used to investigate the coupled vibrations of the ¯exible
disk/shaft/bearing system. The total system is regarded as a disconnected
assemblage of substructures (¯exible shaft and ¯exible disks) which satisfy the
geometric constraint conditions of motion at the disconnected points. The energy
functions for every substructure are determined by elastic deformations and
®ctitious geometric constraint conditions. The motion of every substructure is
represented as a weighted ®nite series of admissible functions (assumed modes
method). As admissible functions, the mode shapes obtained from the analytical
solutions of individual non-rotating elements can be used. The energy elements
are obtained in a discretized form by expressing motions in terms of the
weighted admissible functions. Then, Lagrange's equations of motion are used to
formulate the equations of motion. Compared with the popular FEM (®nite
element method) in complex mechanical and structural vibration analysis,
several observations can be made:
(1) The substructure synthesis method does not need the large number of

degrees of freedom as required in ®nite element analysis.
(2) Due to the expansion in terms of the global admissible functions, which

extend over the entire individual substructures in substructure synthesis, the
fundamental vibration characteristics of the system is ensured to be correct, since
the admissible functions consist of one set of approximate solutions of the
system. In contrast, the FEM, which uses local admissible functions de®ned over
small subdomains of substructures, might lead to erroneous numerical output in
dynamic problems of continuous media.
(3) However, the substructure synthesis method is applicable to relatively

regular systems, consisting of simple structural elements (substructures), such as
beams and plates, the exact analytic mode shapes of which are well available,
while the FEM is applicable to irregular systems. This restriction to substructure
synthesis is not an excessive demand considering that most practical structures
can be idealized as composed of simple substructures.
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3. GOVERNING EQUATIONS

3.1. ENERGY FUNCTIONS

The goal of the following analysis is to produce equations governing the
transverse bending coupled vibrations of a ¯exible shaft/disks system based on a
Timoshenko beam model. The substructure synthesis technique is applied to
discretize the complex continuous structure. For the bending coupled vibration
of the shaft and the single nodal diameter disk modes, in addition to the
transverse displacements, the gyroscopic moments, and rotary inertia and shear
deformation effects are considered.
The fundamental assumption in the bending analysis of the shaft including

shear de¯ection is that plane cross-sections originally normal to the neutral axis
remain plane, but they do not remain normal to the deformed neutral axis.
Four independent variables are needed to describe the shaft transverse motion

in two orthogonal planes in the rotating co-ordinates X1±Y1±Z1: vS1 and wS1 ,
and vS1 and wS2 , where vS1 and wS1 are small transverse de¯ections due
to bending (¯exure), and vS2 and wS2 are small transverse de¯ections due to
shearing. Then, the total transverse de¯ections are

vS � vS1 � vS2, wS � wS1 � wS2:

The potential energy, VS , of the shaft due to the shearing and bending
deformations in the rotating co-ordinate system, X1±Y1±Z1, is expressed as [22]
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where k is the shear correction factor (or shape factor, since it is a function of
the cross-sectional shape) which is introduced to consider the non-uniform shear
stress distribution over the cross-sectional area (Timoshenko's hypothesis results
in a uniform shear strain); ES , GS , and AS are the Young's modulus, shear
modulus and cross-sectional area of the shaft, respectively; and IS is the area
moment of inertia of the shaft about a diameter.
The kinetic energy of the shaft is due to translation and rotation and is written

as [23]
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where ySx and ySZ are small angles of rotation of the shaft cross-section due to
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bending, and may be expressed as

ySx � ÿ @wS1

@x
and ySZ � @vS1

@x
:

The kinetic energy of the ith disk is
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where a0i and b0i are the inner and outer radii, respectively; hDi is the thickness;
mDi is the mass; JDxi and JDyi are the disk mass moments of inertia about the
axis of rotation and a diameter, respectively; vi and wi are the shaft
displacements at the ith disk location; and yxi and yZi are the small rotation
angles due to bending of the shaft at the ith disk location. Note that the energy
terms associated with the constant rigid body rotation are neglected since they
will subsequently be cancelled out in Lagrange's equations.
The strain energy of the ith disk can be expressed as [7]
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The total kinetic and potential energy of the disks are respectively

TD �
XM
i�1

TDi, VD �
XM
i�1

VDi: �8�

To introduce the bearing forces, one makes use of the virtual work expression

dW�t� �
XN
i�1
�ÿ�kiyyVS � kiyzWS � ciyy _VS � ciyz _WS�dVS

ÿ �kizyVS � kizzWS � cizy _VS � cizz _WS�dWS�jbi:
where |bi represents that the shaft displacements are evaluated at the ith bearing
location, and VS and WS are shaft de¯ections in the inertial co-ordinate system
X0±Y0±Z0. One assumes that kiyy � kizz � ki1, kiyz � ÿkizy � ki2, ciyy � cizz � ci1,
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and ciyz � ÿcizy � ci2 (suf®cient but not essential conditions for isotropic
bearings). Then

dW�t� �
XN
i�1
�ÿ�ki1VS � ki2WS � ci1 _VS � ci2 _WS�dVS

ÿ �ÿki2VS � ki1WS ÿ ci2 _VS � ci1 _WS�dWS�jbi: �9�
The relations between displacements vS , wS and VS , WS are given by

VS � vS cos Otÿ wS sin Ot, WS � vS sin Ot� wS cosOt, �10�
where the relations are schematically shown in Figure 2. Inserting equation (10)
into equation (9), one has

dW�t� � ÿ
XN
i�1
�ki1�vSdvS � wSdwS� � ki2�wSdvS ÿ vSdwS�

� ci1� _vSdvS � _wSdwS� � ci2� _wSdvS ÿ _vSdwS�
ÿ ci1O�wSdvS ÿ vSdwS� � ci2O�vSdvS � wSdwS��jbi: �11�

3.2. DISCRETIZATION OF THE DISTRIBUTED SYSTEM

As an approximate treatment, the displacements of the continuous shaft and
disk substructures will be assumed in the form of a series composed of a linear
combination of weighted admissible functions (assumed modes method). The
eigenfunctions of the transverse vibration of a free±free ¯exure and shear beam
[24] will be chosen as the admissible functions for the transverse de¯ections of
the shaft due to bending and due to shearing, respectively. The eigenfunctions of
the free vibration of the corresponding stationary disk will be chosen as the
admissible functions for the disks [5, 25]. With this conception and the fact that
only one-nodal diameter modes of the disk couple with the shaft bending modes,
the transverse displacement of the ith disk can be written as

uDi � cos yFFFDi�r�Qxi�t� � sin yFFFDi�r�QZi�t�, �12�
where FFFDi (r) is the row vector consisting of the admissible functions of the disk,
and Qxi (t) and QZi (t) are column vectors consisting of the corresponding time-
dependent generalized co-ordinates of the ith disk.
The shaft bending displacement will take the form

vS1 � FFFS1�x�QV1�t�, wS1 � FFFS1�x�QW1�t�, �13�
and

vS2 � FFFS2�x�QV2�t�, wS2 � FFFS2�x�QW2�t�, �14�
where FFFS1(x) and FFFS2(x) are the row vectors consisting of the admissible
functions of the shaft which describe the shaft motions in two orthogonal planes
caused by bending and shearing, respectively; and QV1(t) and QW1(t), and QV2(t)
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and QW2(t) are column vectors consisting of the corresponding time-dependent
generalized co-ordinates.
Substituting equations (12)±(14) into equations (6)±(8) and (11), using matrix

formulation, and reducing lead to the discretized total energy functions

T � Ts � TD, V � VS � VD, @W �
XN0

k�1
Rk dqk, �15�

where the detailed expressions are summarized in Appendix B, and N0 is the
number of degrees of freedom of the total discretized system.

3.3. GOVERNING EQUATIONS

In the last section, the total kinetic and potential energies and the virtual work
have been expressed in terms of a limited number of generalized co-ordinates.
Then Lagrange's equations are the direct choice for the formulation of the
ordinary differential equations of motion of the total structure. Lagrange's
equations take the form

d
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� Rk, k � 1, 2, . . . ,N0, �16�

where L�� Tÿ V�; qk�QV1,QW1,QV2,QW2,Qxi and QZi), and Rk are the
Lagrangian, generalized co-ordinates, and the forces which are not included in
the potential energy function, respectively. Introducing equation (15) into
equation (16) leads to a coupled set of equations. The generalized complex co-
ordinates are de®ned, with two orthogonal generalized co-ordinates being the
real and imaginary parts of a complex co-ordinate, as

ZS1 � QV1 � jQW1, ZS2 � QV2 � jQW2 , ZDi � Qxi � jQZi:

Employing the complex co-ordinates, the coupled equations of motion are
expressed in matrix notation as
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�17�
where

C11 � K
�3��3�

S1 � j�O�K�1�S1 �MS1� ÿ K
�4��3�

S1 �, C12 � K
�3��3�

S12 � j�2OMS12 ÿ K
�4��3�

S12�,

C22 � K
�3��3�
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S2 �,
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�1�
S1 � K

�2�
S1 � K

�1��3�
S1 ÿ jK

�2��3�
S1 , K12 � ÿO2MS12 � K

�1��3�
S12 ÿ jK

�2��3�
S12,

K22 � ÿO2MS2�K�2�S2 � K
�1��3�

S2 ÿ jK
�2��3�

S2 ,

and the element matrices are given in Appendix C.

4. NUMERICAL SIMULATION

To illustrate the ef®ciency of the present method, a rotor model of typical
dimensions for the utility industry (turbine-generator set) is studied. The model
shown in Figure 4 consists of a long shaft, four uniform disks, and four journal
bearings. The details of the system con®guration (Figures 1 and 4) are listed as
follows (in mm): a0� 380, b01� 1750, b02� 1550, r1� 75, r2� 115, r3� 769,

S
l5

l4

l3

l2

l1

r1 r2
r3 r4a0

b02

c11
c12

k11k12

k21k22
k31k32

c21
c22

k41k42

c41
c42

c31
c32

b01

hD

Shaft

Disk

Figure 4. Cross-sectional view of the numerical model.
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r4� 824, b1� 1203, b2� 9281, b3� 12 151, b4� 21 809, d1� 2613, d2� 4399,
d3� 6185, d4� 7971, hD� 200, l1� 230, l2� 10 126, l3� 11 106, l4� 14 844,
l5� 20 026, and S� 23 599. The material and bearing properties are:
r � 7700 kg=m3, E � 19�061010 N=m2, � � 0�3, k11 � k21 � 2�06109 N=m,
k31 � k41 � 3�06109 N=m, k12= k22= k32= k42=0�0 N/m, c11= c21= c31=
c41= 6�56105 N s=m, and c12 � c22 � c32 � c42 � 0�0N s=m.

4.1. ADMISSIBLE FUNCTIONS

According to the substructure synthesis, the displacements of the continuous
shaft and disks are assumed in the form of a series composed of a weighted
linear summation of admissible functions, as shown in equations (12)±(l4).
Mode shapes of the non-rotating uniform beam with free±free boundary
conditions and the non-rotating uniform circular plate with inner clamped±outer
free boundary conditions are used as the admissible functions for the shaft and
the disks, respectively. The formulas used to obtain the admissible functions are
as follows.
The ¯exural (bending) de¯ections of a slender free±free shaft (0Ex/SE1�0, S

is the length of the shaft), with rotary inertia ignored:

Y1�x� � 1�0, Y2�x� �
�����
12
p
�x=Sÿ 0�5�,

Yi�x� � cosh�li x=S� � cos�li x=S�ÿsi�sinh�li x=S� � sin�li x=S��, i � 3, 4, 5, . . . ,

si � �cosh li ÿ cos li�=�sinh li ÿ sin li�:
The transcendental equation for the dimensionless natural frequency parameter l
is

cos l cosh l � 1:

The shearing de¯ections of a free±free shaft are

Yi�x� �
���
2
p

cos�ipx=S�; i � 1, 2, 3, . . . :

The transverse de¯ections of the disks are

R1n�r� � ANJ1�bnr=b0i� � BnY1�bnr=b0i � CnI1�bnr=b0i� �DnK1�bn r=b0i�;
n � 0, 1, 2, . . . , i � 1, 2,

where subscript ``1'' designates the modes of one nodal diameter, and n is the
number of the nodal circles, not counting the nodal circle enforced by the inner
clamped boundary condition; J1 and Y1 are Bessel functions of the ®rst and
second kind, respectively, and I1 and K1 are the modi®ed Bessel functions of the
®rst and second kind, respectively; An , Bn , Cn , and Dn are constants determined
by the boundary conditions, nodal circle number and the normalized condition;
bn is a dimensionless parameter, and bn is related to the natural frequency
on (rad/s) by

b4n � o2
n

rDhDb
4
0

D
,
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where the bn are determined by setting the coef®cient determinant of the linear
equation set, derived by the boundary conditions, to zero [5, 25].
Some lowest mode shapes for the admissible functions are depicted in

Figure 5, where the natural frequencies of the disk modes are also listed.

4.2. CONVERGENCE

A convergence study is carried out, as shown in Tables 1±3, where the bold
terms are those unchanged compared with the previous calculation. DOF stands
for the degree of freedom of the total discretized system, NS1 is the number of
admissible functions for the bending de¯ections of the shaft, NS2 is the number
of admissible functions for the shearing de¯ections of the shaft, and ND is the
number of admissible functions for the transverse de¯ections of the disks. From
Table 1, one sees that when NS1� 26, satisfactory convergence is attained for
the value precision used here. For NS2 and ND, the convergence is relatively
much more rapid. This is because the contribution from the shearing
deformation is much smaller than that from the bending deformation, and the

562 Hz

(a) (b)

(c)

768 Hz

79 Hz

110 Hz

1580 Hz

2162 Hz

(d)

Figure 5. Some lowest admissible functions for (a) the bending de¯ections of the shaft, (b) the
shearing de¯ections of the shaft, (c) the transverse de¯ections of the disks of radius 1750mm, and
(d) the transverse de¯ections of the disks of radius 1550 mm.
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natural frequencies of the higher disk modes are much larger than the frequency
range considered in the discussion. From the convergence study, one chooses
NS1� 26, NS2� 10, and ND� 2 to describe the local de¯ections of each
element, and a total of 88 degrees of freedom are obtained for the discretized
system (2662 for the shaft two-degree-of-freedom bending defections, 1062 for
the shaft two-degree-of freedom shearing defections, and (262)64 for the two-
degree-of-freedom transverse de¯ections of four disks).

5. RESULTS AND DISCUSSION

5.1. BENDING COUPLED NATURAL FREQUENCIES

The equations of motion (17) were derived in the rotating co-ordinate system
X1±Y1±Z1 for the shaft and X2±Y2±Z2 for the disks. Then the natural
frequencies were obtained in the rotating co-ordinates. For comparing with
experimental results, which are generally obtained relative to a stationary
observer, it is necessary to show the natural frequencies in stationary co-
ordinates. Since the transformation relations from the rotating co-ordinates to
the stationary co-ordinates are different in view of the shaft transverse vibration
and in view of the disk transverse vibration, there will be two sets of different
natural frequencies in stationary co-ordinates.
In view of the shaft transverse vibration, the relation is

o0 � o� O, �18�
where o is the natural frequency in rotating co-ordinates including both positive
values for forward modes and negative values for backward modes, O is the
shaft rotating speed and o0 is the natural frequency in stationary co-ordinates.
In view of the disk transverse vibration, the transformation from rotating co-

ordinates (X2±Y2±Z2 system, which is ®xed in the disk) to stationary co-
ordinates (X0±Y0±Z0 system, which is stationary in the space) (see Figure 2) is
not without some dif®culty. Compared to the rotation angle Ot, the small
vibration angles yx and yZ may be ignored for the purpose of co-ordinate
transformation. Then the angular co-ordinates of the two systems are connected
by the relation

y0 � y� Ot:

The response of the disk to a stationary force (F0 coso0t, acting at r0� r, and
y0� 0) in space is [26]

u � K�r,m�F0 f �r� cosmy
cos�o0 �mO�t
jo2 ÿ �o0 �mO�2j �

cos�o0 ÿmO�t
jo2 ÿ �o0 ÿmO�2j

" #
, �19�

where o is the natural frequency in rotating co-ordinates, m is the nodal
diameter number of the disk mode. From formula (19), it is seen that there are
two resonant frequencies relative to a stationary observer:
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o0 � o�mO, and o0 � oÿmO
ÿ�oÿmO�

for oemO,
for o < mO:

�
�20�

Note that the natural frequency value of the disk transverse vibration should be
positive. oÿmO and ÿ(oÿmO) is a continuous curve when drawn as a
frequency±speed diagram, so one generally states that every natural frequency
splits into two branches when rotating. This is saying that two excitation
frequencies stationary in space will excite the same resonant mode at a given
angular velocity, which has been well veri®ed by experimental results [16].
For the speci®c problem discussed in the paper, o is the coupled shaft±disk

natural frequency, which can be negative in value resulted from the backward
precessional modes of the rotor system; and m� 1 since only modes of one nodal
diameter contribute to the bending coupled vibration. The transformation
relation (20) will change to

o0 � joj � O, and o0 � joj ÿ O
ÿ�joj ÿ O�

for jojeO,
for joj < O:

�
�21�

According to formula (18), the coupled natural frequencies, in view of the shaft
transverse vibration, are shown in Figures 6(a) and (b) for the ¯exible-shaft/
rigid-disk model and the ¯exible-shaft/¯exible-disk model, respectively.
According to formula (21), the coupled natural frequencies for the ¯exible-shaft/
¯exible-disk model, in view of the disk transverse vibration, are shown in Figures
7(a) and (b) for the forward precessional modes and the backward precessional
modes, respectively. Note that, for the ¯exible-shaft/rigid-disk model, the natural
frequencies in view of disk transverse vibration are the same as those in view of
the shaft transverse vibration.

5.2. BENDING COUPLED MODE SHAPES

The ten lowest coupled mode shapes and the corresponding frequency values,
at zero rotating speed, are shown in Figure 8(a) without considering disk
¯exibility and Figure 8(b) considering disk ¯exibility. One sees that for modes (1)
and (2) in Figure 8(a), and modes (1) and (2) in Figure 8(b), the disk ¯exibility
does not have visible in¯uence on both the natural frequency values and the
mode shapes within the precision shown. For the comparable modes (3)±(6), the
disk ¯exibility reduces the natural frequency values, and has some in¯uence on
the mode shapes. Modes (1)±(6) are called shaft-dominating modes, which can
be well predicted without considering disk ¯exibility and the inclusion of disk
¯exibility will reduce or have negligible in¯uence on the natural frequency
values. Other modes in Figure 8(a) do not have comparable partners in Figure
8(b). One notes that the natural frequencies of these modes are around the
natural frequencies (79 and 110Hz) of the ®rst disk modes shown in Figures 5(c)
and (d). For modes (7), (8) and (10) in Figure 8(b), the shaft has obvious
de¯ections at the disk locations, and the disks deform in such a manner that
their inertia moments on the shaft do not cancel out. These modes are called
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shaft±disk coupled modes. They cannot be predicted without considering disk
¯exibility or shaft ¯exibility. For mode (9) in Figure 8(b), the shaft has small
de¯ections, especially at the disk locations, and the disks deform in such a
manner that their inertia moments on the shaft cancel out. These modes are
called disk-dominating modes. They cannot be predicted without considering
disk ¯exibility and can be well predicted without considering shaft ¯exibility
(®rst mode of the larger disks). The calculation without considering shaft
¯exibility is out of the scope of this paper and will be discussed in further
research output. Now returning to the natural frequencies in Figure 6. For the
shaft-dominating mode, good comparability is attained between Figures 6(a) and
(b). Due to the introduction of shaft±disk coupled modes and disk-dominating
modes around the natural frequency of the ®rst disk modes, the natural
frequencies in Figure 6(b) become complicated between around 70 and 160Hz
and are dif®cult to compare with Figure 6(a), especially at low spinning speeds.
Some of these natural frequencies increase rapidly as the rotor speed increases,
which is caused by the centrifugal stiffening as a result of rotation of the ¯exible
disks. The centrifugal stiffening effect is introduced through disk potential
energy as the term
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Figure 6. Coupled modal frequencies of the rotor system in view of the shaft transverse
vibration. (a) Flexible shaft and rigid disks, and (b) ¯exible shaft and ¯exible disks. Key for (a):
12 forward and 13 backward natural frequencies are drawn within the range of (ÿ300Hz,
300Hz); key for (b): 15 forward and 16 backward natural frequencies are drawn within the range
of (ÿ300Hz, 300Hz).
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At high rotational speeds, good comparability appears between Figures 6(a) and
(b) for the modes around 70±160Hz since the disks become stiffer due to
rotation.
For the higher natural frequencies above 180Hz, the shaft-dominating modes

appear again due to the far separation from the disk natural frequencies. These
modes will not be discussed in detail here since they are far from the frequency
range of practical concern.

6. SUMMARY AND CONCLUSIONS

The intricate coupled vibration problem of a spinning Timoshenko beam/disk/
bearing system was investigated based on the ¯exible-shaft/¯exible-disk model.
According to the nature of coupling with the shaft, disk vibratory modes are
classi®ed into three groups: uncoupled disk modes with more than one nodal
diameter, disk modes with a single nodal diameter coupled with the shaft
bending vibrations and axisymmetric modes coupled with the shaft
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Figure 7. Coupled modal frequencies of the rotor system in view of the disk transverse
vibration. (a) Forward precessional modes, and (b) backward precessional modes. Key for (a): 17
forward natural frequencies are drawn within the range of (0Hz, 300Hz); key for (b): 16 back-
ward natural frequencies are drawn within the range of (0Hz, 300Hz).
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longitudinal(axial) vibrations. The bending coupled vibrations of single nodal
diameter disk modes and the shaft-bearing system were solved by a substructure
synthesis technique. The centrifugal stiffening effect of disks was included in the
formulation. The coupled natural frequencies, both in view of the shaft
transverse vibration and in view of the disk transverse vibration, and the coupled
mode shapes at stationary state were obtained for an idealized turbine-generator
set. For the typical rotor case examined, the disk ¯exibility will have important
in¯uence on the vibration characteristics of the rotor system, especially at the
natural frequency range around the disk natural frequencies. By including disk
¯exibility, the coupled modes of the shaft/disk/bearing system may be divided
into three types: the shaft-dominating modes, the shaft±disk coupled modes, and
the disk-dominating modes. Disk ¯exibility will reduce the natural frequency
values of some shaft-dominating modes and has negligible in¯uence on others.
The shaft±disk coupled modes, and the disk-dominating modes cannot be
predicted without considering disk ¯exibility.
As a rule of thumb, disk ¯exibility can be ignored if the frequency range of

interest is far from the disk natural frequencies, otherwise the coupled ¯exible-
shaft/¯exible-disk analysis must be performed.

REFERENCES

1. G. R. KIRCHHOFF 1850 Crelle's Journal (Jour. Math.) 40, 51±88. UÈ ber das
Gleichgewicht und die Bewegung einer elastischen Scheibe.

(a) (b)

(1) 15.1 Hz

(2) 23.0 Hz

(3) 39.8 Hz

(4) 53.0 Hz

(5) 58.9 Hz

(6) 66.9 Hz

(7) 70.3 Hz

(8) 98.7 Hz

(9) 128.7 Hz

(10) 157.1 Hz

(1) 15.1 Hz

(2) 23.0 Hz

(3) 39.6 Hz

(4) 51.7 Hz

(5) 58.4 Hz

(6) 63.2 Hz

(7) 67.6 Hz

(8) 76.1 Hz

(9) 79.6 Hz

(10) 97.5 Hz

Figure 8. Coupled vibration mode shapes of (a) the ¯exible-shaft/rigid-disk model, and (b) the
¯exible-shaft/¯exible-disk model (O� 0 rpm).



MULTISPAN SHAFT WITH FLEXIBLE DISKS 645

2. G. R. KIRCHHOFF 1850 Poggendor� 's Annal 81, 258±264. UÈ ber die Schwingungen
einer KreisfoÈ rmigen elastischen Scheibe.

3. LORD RAYLEIGH 1945 The Theory of Sound (two volumes). New York: Dover
Publications; second edition. See Volume 1, pp. 352±394.

4. H. LAMB and R. V. SOUTHWELL 1921 Proceedings of the Royal Society, London,
Series A 99, 272±280. The vibration of a spinning disk.

5. R. V. SOUTHWELL 1922 Proceedings of the Royal Society, London, Series A 101,
133±152. On the free transverse vibrations of a uniform circular disc clamped at its
center; and on the e�ects of rotation.

6. C. D. MOTE, JR. 1970 Journal of the Franklin Institute 290, 329±344. Stability of
circular plates subjected to moving loads.

7. H. S. JIA, S. B. CHUN and C. W. LEE 1997 Journal of Sound and Vibration 208,
175±187. Evaluation of the longitudinal coupled vibrations in rotating, ¯exible
disks/spindle systems.

8. J. A. DOPKIN and T. E. SHOUP 1974 American Society of Mechanical Engineers
Journal of Engineering for Industry 96, 1328±1333. Rotor resonant speed reduction
caused by ¯exibility of disks.

9. D. R. CHIVENS and H. D. NELSON 1975 American Society of Mechanical Engineers
Journal of Engineering for Industry 97, 881±886. The natural frequencies and critical
speeds of a rotating, ¯exible shaft±disk system.

10. F. J. WILGEN and A. L. SCHLACK 1979 American Society of Mechanical Engineers
Journal of Mechanical Design 101, 298±303. E�ects of disk ¯exibility on shaft whirl
stability.

11. A. A. S. SHAHAB and J. THOMAS 1987 Journal of Sound and Vibration 114, 435±
452. Coupling e�ects of disc ¯exibility on the dynamic behavior of multi disc±shaft
systems.

12. J. M. VANCE 1988 Rotordynamics of Turbomachinery. New York: Wiley. See pp.
137±169.

13. F. WU and G. T. FLOWERS 1992 American Society of Mechanical Engineers Journal
of Vibration and Acoustics 114, 242±248. A transfer matrix technique for evaluating
the natural frequencies and critical speeds of a rotor with multiple ¯exible disks.

14. I. Y. SHEN and C.-P. R. KU 1997 American Society of Mechanical Engineers
Journal of Applied Mechanics 64, 165±174. A nonclassical vibration analysis of a
multiple rotating disk and spindle assembly.

15. L. MEIROVITCH 1980 Computational Methods in Structural Dynamics. The
Netherlands: Sijtho� & Noordho�. See pp. 298±300 and 401±409.

16. C. W. LEE, H. S. JIA, C. S. KIM and S. B. CHUN 1997 Journal of Sound and
Vibration 207, 435±451. Tuning of simulated natural frequencies for a ¯exible shaft-
multiple ¯exible disk system.

17. LORD RAYLEIGH 1945 The Theory of Sound (two volumes). New York: Dover
Publications; second edition. See Volume 1, pp. 255±294.

18. S. P. TIMOSHENKO 1921 Philosophical Magazine 41, 744±746. On the correction for
shear of the di�erential equation for transverse vibrations of prismatic bars.

19. S. P. TIMOSHENKO 1922 Philosophical Magazine 43, 125±131. On the transverse
vibrations of bars of uniform cross-section.

20. H. S. JIA and C. W. LEE 1998 KSME International Journal 12, 223±232. On the
vibration of imperfect circular disks.

21. L. MEIROVITCH 1967 Analytical Methods in Vibrations. New York: Macmillan. See
pp. 179±189.

22. W.-R. CHEN and L. M. KEER 1993 American Society of Mechanical Engineers
Journal of Vibration and Acoustics 115, 285±294. Transverse vibrations of a rotating
twisted Timoshenko beam under axial loading.



646 H. S. JIA

23. C. W. LEE and S. B. CHUN 1998 American Society of Mechanical Engineers Journal
of Vibration and Acoustics 120, 87±94. Vibration analysis of a rotor with multiple
¯exible disks using assumed modes method.

24. R. D. BLEVINS 1979 Formulas for Natural Frequency and Mode Shape. New York:
Von Nostrand Reinhold. See pp. 101±182.

25. S. M. VOGL and D. W. SKINNER 1965 American Society of Mechanical Engineers
Journal of Applied Mechanics 32, 926±931. Natural frequencies of transversely
vibrating uniform annular plates.

26. S. A. TOBIAS and R. N. ARNOLD 1957 Proceedings of the Institution of Mechanical
Engineers 171, 669±690. The in¯uence of dynamical imperfection on the vibration
of rotating disks.

APPENDIX A: STRESSES, LAPLACIAN, AND FLEXURAL RIGIDITY
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APPENDIX B: DISCRETIZED TOTAL ENERGY FUNCTIONS
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where the element matrices are listed in Appendix C.

APPENDIX C: ELEMENT MATRICES
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where

ei1 � ki1 � ci2O, ei2 � ki2 ÿ ci1O, ei3 � ci1, and ei4 � ci2,

and |di represents values evaluated at the ith disk location. A prime represents
differentiation with respect to the spatial variables x and r for FFFS and FFFDi ,
respectively.

APPENDIX D: NOMENCLATURE

a, a0i disk inner-clamping radius
AS cross-sectional area of the shaft
b, b0i disk outer radius
bi locations of bearings on the shaft
ci1 , ci2 radial damping coef®cients of bearings
D, Di ¯exural rigidity of disks
di locations of disks on the shaft
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E, ES , ED Young's moduli
Fp inertia force of a vibrating disk
GS shear modulus
hD , hDi thickness of disks
IS area moment of inertia of the shaft about a diameter
JDxi disk mass moment of inertia about the axis of rotation
JDyi disk mass moment of inertia about a diameter
k shear correction factor
ki1 , ki2 radial stiffness coef®cients of bearings
L Lagrangian
M total number of disks
Mp inertia moment of a vibrating disk
mDi mass of a disk
(m, n) disk mode with m nodal diameters and n nodal circles
N number of bearings
N0 number of degrees of freedom of the total discretized system
Nr , Ny normal stress resultants in polar co-ordinates
qk generalized independent co-ordinates
Qxi , QZi , QVi , QWi column vectors consisting of generalized co-ordinates
(r, y) polar co-ordinates for a disk
Rk generalized forces from bearing action
Rmn radial distribution of disk mode shapes
S length of the shaft
T, TD , TDi , TS kinetic energies
uD , uDi transverse displacements of disks
V, VD , VDi , VS potential energies
(vS , wS), (VS , WS) total transverse displacements of the shaft
(vS1 , wS1) ¯exural deformations of the shaft
(vS2 , wS2) shearing deformations of the shaft
dW virtual work done by the bearing forces
ZDi , ZS1 , ZS2 column vectors consisting of generalized co-ordinates of

complex form
FFFDi , FFFS1 , FFFS2 row vectors consisting of admissible functions
r, rD , rS mass densities
v, vD Poisson's ratios
r2 Laplacian operator
r4 biharmonic operator
O rotational speed of the shaft
ymn0 orientation angle of a disk mode

Subscripts
bi, di values evaluated at the ith bearing and ith disk location
D disk
Di ith disk
S shaft
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